不同溫度下,2205雙相不銹鋼在3.5%NaC1溶液以及3.5%NaCl+不同濃度的MoO2-4溶液中的Nyquist圖如圖5.33所示。


33.jpg


  從圖5.33中可以看出,在不同溶液溫度下,雙相不銹鋼在3.5%NaCl溶液中Nyquist圖存在兩個(gè)容抗弧,分別處于高頻和低頻,高頻處的容抗弧代表電化學(xué)過(guò)程存在電荷轉(zhuǎn)移的過(guò)程,而低頻處的容抗弧的存在說(shuō)明雙相不銹鋼表面存在一層膜。向溶液中加入MoO2-4后,高頻處的容抗弧的變化不明顯,而低頻處的容抗弧的變化明顯,說(shuō)明MoO2-4對(duì)雙相不銹鋼的表面膜有影響。


 不同溫度下,2205雙相不銹鋼在3.5%NaCl+不同濃度的MoO2-4溶液中的Bode 圖如圖5.34所示。


35.jpg


 從圖5.34中可以看出,雙相不銹鋼在3.5%NaCl溶液和3.5%NaCl+不同濃度的MoO2-4溶液中的Bode圖中都存在兩個(gè)時(shí)間常數(shù),且MoO2-4的引入對(duì)Bode圖的相位角峰值,以及阻抗模值都有影響。


  曹楚南的電化學(xué)阻抗譜分析認(rèn)為,不銹鋼鈍化過(guò)程存在兩個(gè)時(shí)間常數(shù),這與本實(shí)驗(yàn)所測(cè)得的數(shù)據(jù)一致;從圖5.34中可以看出,在高頻和低頻處都存在相位角峰值,并且MoO2-4引入后,相位角峰值有所降低,下降程度與MoO2-4相關(guān);在低頻處的時(shí)間常數(shù)與合金表面膜的形成有關(guān),而高頻處的時(shí)間常數(shù)與電荷轉(zhuǎn)移電阻有關(guān)。


  圖5.35為雙相不銹鋼在3.5%NaCl溶液中的等效電路圖,其中R1為溶液電阻,R2為電荷轉(zhuǎn)移電阻,R3為膜電阻,Cdl為雙電層電容,Cf為膜電容。圖5.36和圖5.37分別為采用圖5.35為等效電路擬合后的各元器件的數(shù)值圖。其中電荷轉(zhuǎn)移電阻阻抗值和雙電層電容與MoO2-4濃度的關(guān)系如圖5.36所示;膜電阻阻抗值和膜電容與MoO2-4濃度的關(guān)系如圖5.37所示。R2,R3,Cdl以及Cf的具體數(shù)值如表5.12所列。


  圖5.35所示的等效電路圖通常被用來(lái)研究金屬的局部腐蝕;雙相不銹鋼在自腐蝕電位下形成的表面鈍化膜是存在缺陷的,圖5.35中材料表面由于缺陷的存在而暴露于電解質(zhì)溶液中,但是大部分合金表面是被鉬酸鹽層覆蓋,從而它可以被看作一個(gè)純電容的值。R3和Cf描述的是抑制劑的吸附和鈍化層;用Cdl和R2描述電化學(xué)反應(yīng)過(guò)程中的電荷轉(zhuǎn)移過(guò)程,其中Cdl表示有缺陷的鈍化膜的電容。


36.jpg


  從圖5.36(a)中可以看出,在相同溶液溫度下,隨著溶液中c(MoO2-4/Cl-)的升高,R2呈現(xiàn)升高的趨勢(shì),這很可能是與雙相不銹鋼的表面發(fā)生電化學(xué)反應(yīng)的阻力變大有關(guān)。從圖5.36(b)中可以看出,在相同溶液溫度下,Cdl的值隨著c(MoO2-4/Cl-)的升高,呈現(xiàn)先升高后下降的趨勢(shì)。根據(jù)電容值與雙電層間距呈反比,與平行板面積呈正比的關(guān)系可知,當(dāng)溶液中的MoO2-4濃度較低時(shí),即c(MoO2-4/Cl-)的比值較小時(shí),Cdl的值升高,這說(shuō)明暴露于電解質(zhì)溶液中的試樣的面積變大或者雙電層間距變小。MoO2-4與Cl-之間的競(jìng)爭(zhēng)吸附的關(guān)系示意圖如圖5.38所示。當(dāng)MoO2-4濃度較低時(shí)(圖5.38(a)),MoO2-4的引入會(huì)引起雙相不銹鋼表面的CI-出現(xiàn)局部集中的現(xiàn)象,導(dǎo)致局部的Cl-濃度升高,促進(jìn)了Cl-對(duì)鈍化膜的破壞,加速了表面膜的溶解,使得原本存在缺陷的鈍化膜的面積變小,雙相不銹鋼暴露于電解質(zhì)溶液中的面積變大,導(dǎo)致C的值升高。當(dāng)MoO2-4的濃度升高時(shí)(圖5.38(b)、(c)),MoO2-4占據(jù)了大部分的雙相不銹鋼表面,甚至使得Cl-脫離雙相不銹鋼表面,使得CI-在雙相不銹鋼表面的濃度降低,并且MoO2-4吸附在不銹鋼表面,降低了Cl-破壞鈍化膜的可能性,使得Ca的值下降。


38.jpg


 從表5.12中可以看出,膜電阻的阻抗值遠(yuǎn)遠(yuǎn)大于電化學(xué)反應(yīng)過(guò)程的電荷轉(zhuǎn)移電阻的阻抗值,說(shuō)明膜電阻在整個(gè)反應(yīng)過(guò)程中占主導(dǎo)地位,決定了腐蝕速度的快慢,影響著雙相不銹鋼的耐蝕性能。


 從圖5.37(a)中可以看出,在相同溶液溫度下,隨著c(MoO2-4/Cl-)的升高,電阻阻抗值望現(xiàn)先下降后升高的趨勢(shì),這與從雙相不銹鋼的自腐蝕電流的變此趨勢(shì)是一致的,說(shuō)明雙相不銹鋼的腐蝕速率隨著MoO2-4的濃度的升高,呈現(xiàn)先變快后變慢的趨勢(shì)。從圖5.37(b)中看出,在相同的溶液溫度下,隨著(MoO2-4/Cl-)的升高,膜電容(Cf)的值呈現(xiàn)先升高后下降的趨勢(shì),即膜的厚度1/Cf隨著c(MoO2-4/Cl-)的升高,先下降后升高。圖5.37(a)、(b)中相關(guān)值的變化趨勢(shì),說(shuō)明了在自腐蝕狀態(tài)下,當(dāng)MoO2-4濃度較低時(shí),MoO2-4的引入使得鈍化膜的厚度變小,加快了腐蝕的速度;而當(dāng)MoO2-4濃度較高時(shí),MoO2-4的吸附使得鈍化膜厚度變大,腐蝕速度開(kāi)始下降。


 EIS的結(jié)果分析表明:在3.5%NaCI溶液中,MoO2-4的引入使得雙相不銹鋼的表面形成一層與MoO2-4濃度有關(guān)的表面膜。


  總的來(lái)說(shuō),電化學(xué)阻抗圖譜的結(jié)果證實(shí)了動(dòng)電位掃描實(shí)驗(yàn)中的自腐蝕電流密度和c(MoO2-4/Cl-)之間的變化關(guān)系。MoO2-4主要通過(guò)增大膜電阻的阻抗值的途徑提高雙相不銹鋼在3.5%NaCl溶液中的耐點(diǎn)蝕性能,且鉬酸根離子能夠提高雙相不銹鋼的耐點(diǎn)蝕性能的濃度約為0.05mol/L.


 圖5.39為合金的鈍化電流密度與MoO2-4濃度之間的關(guān)系圖。


39.jpg


 合金的鈍化電流密度與MoO2-4濃度之間的關(guān)系圖從圖5.39中可以看出,在3.5%NaCl和3.5%NaCl+不同濃度的MoO2MoO2-4-4溶液中,合金的電流密度隨著極化時(shí)間的延長(zhǎng)而降低,前者至600s時(shí)未出現(xiàn)明顯鈍化現(xiàn)象,而后者在300s后都呈現(xiàn)鈍化現(xiàn)象;并且可以明顯看出,向3.5%NaCl溶液中引入MoO2-4后,合金的鈍化電流密度下降,鈍化電流密度由3.5%NaCl溶液中的10μA/c㎡分別下降至3.5%NaCl+0.005mol/LMoO2-4溶液中的6μA/c㎡,3.5%NaCl+0.05mol/L MoO2-4溶液中的5.4μA/c㎡以及3.5%NaCl+0.2mol/L MoO2-4溶液中的5.08μA/c㎡;可以看出,含有不同濃度的MoO2-4的溶液中的鈍化電流密度相差不大,但與3.5%NaCl溶液中的鈍化電流密度相比,其值下降了約50%。


  Cl-對(duì)鈍化膜的破壞會(huì)引起點(diǎn)蝕坑的局部酸化,蝕坑內(nèi)會(huì)發(fā)生如下化學(xué)反應(yīng):


式 1.jpg


  反應(yīng)產(chǎn)生的還原產(chǎn)物覆蓋在合金表面。在一定的陽(yáng)極極化過(guò)程中,陽(yáng)極極化會(huì)引起局部H+提高,pH值降低,促使以上化學(xué)反應(yīng)的發(fā)生,使得還原產(chǎn)物覆蓋于合金表面,提高耐蝕性能。


  點(diǎn)蝕坑不同位置處的拉曼光譜圖如圖5.40所示。從圖中可以看出,點(diǎn)蝕坑處的拉曼位移分別為 323cm-1、387cm-1、479cm-1、796cm-1、876cm-1和195cm-1、323cm-1、387cm-1、795cm-1、844cm-1、876cm-1.有研究表明,MoO2-4的拉曼位移大致為203cm-1, 228cm-1 , 345cm-1 , 363cm-1 , 461cm-1 , 495cm-1,571cm-1,589cm-1,744cm-1.而 MoO2-4的拉曼位移大致為160cm-1,219cm-1,338cm-1,366cm-1,381cm-1,473cm-1,822cm-1,998cm-1.這點(diǎn)蝕坑處的拉曼位移存在差異。如果鉬酸鹽的抑制作用是由鉬的氧化物的產(chǎn)生而引起的,則點(diǎn)蝕坑附近的拉曼光譜應(yīng)與鉬的氧化物的拉曼光譜相對(duì)應(yīng)。而點(diǎn)蝕坑處的拉曼光譜結(jié)果表明,點(diǎn)蝕坑處沒(méi)有鉬的氧化物生成,所以鉬酸鹽的抑制作用不是由鉬的氧化物的產(chǎn)生而引起的。但是,從極化曲線(xiàn)和EIS的結(jié)果分析看出,鉬酸鹽的引入改善了2205雙相不銹鋼在3.5%NaCl溶液的耐蝕性能,并且在其表面存在與鉬酸鹽的濃度有關(guān)的表面膜存在,所以鉬酸鹽的抑制作用更可能是鉬酸鹽在雙相不銹鋼表面形成了一層鹽離子層,此過(guò)程為離子表面吸附產(chǎn)生的表面膜,而不是由化學(xué)反應(yīng)產(chǎn)生的腐蝕產(chǎn)物層。


40.jpg


  20℃下,雙相不銹鋼在3.5%NaCl溶液中和3.5%NaCl+0.05mol/L MoO2-4溶液中極化后,試樣表面的點(diǎn)蝕形貌圖如圖5.41所示。


  從圖5.41中可以看出,與3.5%溶液中點(diǎn)蝕坑(圖5.41(a)、(b))相比較,MoO2-4的引入使得點(diǎn)蝕坑(圖5.41(c))的數(shù)量變少,并且點(diǎn)蝕坑的尺寸(圖5.41(d))變小。另外,圖中的點(diǎn)蝕坑基本集中于鐵素體和鐵素體一奧氏體晶界。含有不同主要元素成分的鐵素體和奧氏體表現(xiàn)出不同的耐蝕性能。鐵素體含有更多的Cr和Mo;而奧氏體還有更多的Ni和Mn,并且N元素富集于奧氏體相中,提高局部腐蝕抗力。


41.jpg


  2507 雙相不銹鋼經(jīng)1050℃固溶處理后,在45℃下于含有不同濃度鉬酸根離子的3.5%%NaCl溶液介質(zhì)中的阻抗圖譜如圖5.42所示。從圖5.42中能夠清晰獲得隨鉬酸根離子濃度升高容抗弧半徑呈先減小后增大的變化趨勢(shì),容抗弧半徑跟試樣和介質(zhì)溶液之間的電荷轉(zhuǎn)移電阻相關(guān),越大表明材料的腐蝕速度越小,所以從圖中所獲得的容抗弧半徑變化規(guī)律可知電極表面的腐蝕速率隨鉬酸根離子濃度的升高先增強(qiáng)后減弱,就整體而言抗蝕性能是提高的。


42.jpg


  2507雙相不銹鋼在含有不同濃度鉬酸根離子溶液中的等效電路如圖5.43所示,采用的等效電路為R(C(R(CR))).其中,Rs代表參比電極和工作電極兩者間的溶液電阻;Cdl為雙電層電容;Cf表示鈍化膜電容;Rf表示鈍化膜電阻;Rct為電荷轉(zhuǎn)移電阻,其值能夠反應(yīng)電荷在電化學(xué)反應(yīng)中透過(guò)電極跟電解質(zhì)溶液中兩相界面遷移難易的大小,也能夠反映金屬發(fā)生腐蝕反應(yīng)的快慢。一般情況下,Rct值越高意味著電荷遷移過(guò)程中所受的阻力越強(qiáng),即材料的耐腐蝕性能越好。本章采用 ZsimpWin 軟件對(duì)阻抗數(shù)據(jù)的擬合結(jié)果如表5.13所列。從表5.13中可以看出不同濃度鉬酸根離子作用下溶液電阻值(R)變化不是很明顯。雙電層電容(Cdl)隨著鉬酸根離子濃度的升高呈先變大后減小的趨勢(shì),具體表現(xiàn)為當(dāng)鉬酸根離子濃度為0mol/L時(shí),雙電層電容(Cdl)值為5.692×10-5(F/c㎡),隨著鉬酸根離子濃度升高為0.005mol/L時(shí),雙電層電容(Cdl)值變大為6.484×10-5(F/c㎡),升高了0.792×10-5(F/c㎡),這主要是由于當(dāng)鉬酸根離子濃度較低時(shí)溶液中的氯離子主要吸附在鋼的表面,在鉬酸根離子跟氯離子競(jìng)爭(zhēng)吸附的作用下,Cl-表現(xiàn)出局部集中,進(jìn)而導(dǎo)致局部氯離子濃度上升,導(dǎo)致CI-對(duì)鈍化膜的破壞作用增強(qiáng),進(jìn)而加快了鋼表面保護(hù)膜的溶解速度,使原本存在缺陷的鈍化膜的面積變小,而暴露在電解質(zhì)溶液中的面積變大,所以Cdl變大;隨著鉬酸根離子濃度繼續(xù)升高雙電層電容(Cdl)又表現(xiàn)為減小的趨勢(shì),當(dāng)MoO2-4濃度達(dá)到0.2mol/L時(shí)雙電層電容(Cdl)減小至3.414×10-5(F/c㎡),這是因?yàn)殂f酸根離子濃度較高,2507雙相不銹鋼的表面主要吸附的是鉬酸根離子,在鉬酸根離子的作用下氯離子的局部集中不明顯甚至脫離鋼表面,導(dǎo)致氯離子對(duì)鋼表面保護(hù)膜的破壞作用減弱,試樣暴露于電解質(zhì)溶液中的面積減小,所以Cl-又逐漸減小。等效電路中的電荷轉(zhuǎn)移電阻(Rct)能夠表征腐蝕系統(tǒng)中金屬電極反應(yīng)速率的快慢,一般情況下,電荷轉(zhuǎn)移電阻(Rct))值越高,表明電荷轉(zhuǎn)移所受到的阻力越大,進(jìn)而材料的腐蝕敏感性越低、耐腐蝕性能越優(yōu),且Rc值越高表明電荷透過(guò)電解質(zhì)溶液跟電極這兩相界面的難度越高。電荷轉(zhuǎn)移電阻(Rct))隨著鉬酸根離子濃度的升高,表現(xiàn)為先降低后變大的變化走勢(shì),當(dāng)鉬酸根離子濃度為0.005mol/L時(shí),電荷轉(zhuǎn)移電阻(Rct))值最小為406.3(Ω·c㎡);


當(dāng)鉬酸根離子濃度為0.2mol/L時(shí),電荷轉(zhuǎn)移電阻(Ra1)值最大為613.4(Ω·c㎡),這表明電荷穿過(guò)電極的阻力首先減弱然后再增強(qiáng),即對(duì)應(yīng)于鋼的腐蝕速率表現(xiàn)為先變快后減慢,跟極化曲線(xiàn)所得icorr的結(jié)果是相同的。從表5.13中也可以看出鈍化膜電阻(Rf)值遠(yuǎn)大于電荷轉(zhuǎn)移電阻(Rct)值,所以在整個(gè)腐蝕體系中鈍化膜電阻(Rf)對(duì)鋼的抗腐蝕性能起著主導(dǎo)作用。隨鉬酸根離子濃度的升高鈍化膜電阻(Rf)表現(xiàn)為先減小后增大,而鈍化膜電容(Cf)呈相反的變化趨勢(shì)先增大后減小,因?yàn)楸Wo(hù)膜的厚度跟膜電容是倒數(shù)關(guān)系,所以隨著鉬酸根離子濃度的增高保護(hù)膜的厚度先減小后增大,即在鉬酸根離子的作用下鋼的腐蝕速率先變快后減慢,這主要是由于鉬酸根離子跟氯離子之間的“競(jìng)爭(zhēng)吸附”和“誘導(dǎo)吸附”導(dǎo)致的。


表 13.jpg


綜上所述,鉬酸根離子對(duì)DSS2507雙相不銹鋼發(fā)生腐蝕具有一定的抑制作用,且當(dāng)其濃度高于0.005mol/L時(shí)作用更為顯著,這與極化曲線(xiàn)所得結(jié)論相同。